Solution of the explosive percolation quest: scaling functions and critical exponents.
نویسندگان
چکیده
Percolation refers to the emergence of a giant connected cluster in a disordered system when the number of connections between nodes exceeds a critical value. The percolation phase transitions were believed to be continuous until recently when, in a new so-called "explosive percolation" problem for a competition-driven process, a discontinuous phase transition was reported. The analysis of evolution equations for this process showed, however, that this transition is actually continuous, though with surprisingly tiny critical exponents. For a wide class of representative models, we develop a strict scaling theory of this exotic transition which provides the full set of scaling functions and critical exponents. This theory indicates the relevant order parameter and susceptibility for the problem and explains the continuous nature of this transition and its unusual properties.
منابع مشابه
THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL
The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...
متن کاملThe Nature of Explosive Percolation Phase Transition
In this Letter, we show that the explosive percolation is a novel continuous phase transition. The order-parameter-distribution histogram at the percolation threshold is studied in Erd˝ os-Rényi networks, scale-free networks, and square lattice. In finite system, two well-defined Gaussian-like peaks coexist, and the valley between the two peaks is suppressed with the system size increasing. Thi...
متن کاملUniversal finite-size scaling functions for percolation on three-dimensional lattices
Using a histogram Monte Carlo simulation method ~HMCSM!, Hu, Lin, and Chen found that bond and site percolation models on planar lattices have universal finite-size scaling functions for the existence probability Ep , the percolation probability P , and the probability Wn for the appearance of n percolating clusters in these models. In this paper we extend above study to percolation on three-di...
متن کاملJa n 20 05 Universal scaling behavior of non - equilibrium phase transitions Sven Lübeck
Non-equilibrium critical phenomena have attracted a lot of research interest in the recent decades. Similar to equilibrium critical phenomena, the concept of universality remains the major tool to order the great variety of non-equilibrium phase transitions systematically. All systems belonging to a given universality class share the same set of critical exponents, and certain scaling functions...
متن کاملPercolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals.
The bond-percolation process is studied on periodic planar random lattices and their duals. The thresholds and critical exponents of the percolation transition are determined. The scaling functions of the percolating probability, the existence probability of the appearance of percolating clusters, and the mean cluster size are also calculated. The simulation result of the percolation threshold ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 90 2 شماره
صفحات -
تاریخ انتشار 2014